MRI Measurement of the Aorta in MESA

João A.C. Lima, MD

Principal Investigator MRI Reading Center Johns Hopkins University

Collaborators: JONHS HOPKINS MESA David Bluemke, MD, John Eng, MD Wendy Post, MD, Pamela Ouiyang, MD Colin Wu, Ph D, Erin Ricketts, MSPH Elzbieta Chamera, RCDS, Bharath Venkatesh, Ph D Gregory Hundley, MD, Gisela Teixido, MD Atul Chugh, MD, Chial Liu, Ph D, Doris Liu, Alban Redheuil, MD, Wenchung Yu, MD Chikara Noda, RCDS, Seamus Whelton, MD So Yeon Lin, MD, Mohammadali Habibi, MD Sirisha Donekal, MD, Kihei Yoneyama, MD Gustavo Volpe, MD, Harjit Chahal, MD Jang-Young Kim, MD, Yoshiaki Ohyama, MD

Introduction for Dataset

- and lumen size
- Calcifications

- Pulse wave velocity (PWV)
- Arterial Stiffness

Structural Change of Ao

Yellow:	elastic lamellae
Black:	collagen fibers
Green:	mucoid material
Red:	muscle

O'Rourke and Hashimoto, JACC 2007:50:1-13

Aortic Strain by ARTFUN Software in MR

Descending Aortic Area (cm2)

Aortic Distensibility

Aortic Distensibility in MRI

Validation

- Flow phantom
- Theoretical Bramwell-Hill model
- Stiffness, age / cohorts

Interobserver variations (SSFP)

AA Area : 6 mm² (39) vs. 560 mm² AA Strain: 1% (8) vs. 18% (12%)

Aortic Pulse Wave Velocity (PWV) by ARTFUN Software in MR

Distance(Δd)

Pulse Wave Velocity (PWV): Gold standard of arterial stiffness

Usually measured on 10 heartbeats PWV = pulse wave velocity

Functional Change of Ao

Lower distensibility, higher PWV

Vascular Aging of MRI-Derived Aortic Function

Redheuil, Yu and Lima, Hypertension 2010

PWV by US and MRI

- Overestimation of vessel length with surface measurement
- Exclusion of the ascending aorta with (low PWV) and inclusion of peripheral arteries (high PWV)

Redheuil A. Yu W et al. Hypertension 2010

MRI Variables for Aortic Studies

(Measured by ARTFUN software)

Variable Name	Variable Label	Units
MAX_ASCAO	Area of maximum ascending aorta	cm ²
MIN_ASCAO	Area of minimum ascending aorta	cm ²
MAX_DESCAO	Area of maximum descending aorta	cm ²
MIN_DESCAO	Area of minimum descending aorta	cm ²
DIFT_ASCDESC	Slope for PWV calculation	
DIST_ASCDESC(H)	Distance of aortic arch	
Strain_ASCAO_Per	Strain of ascending aorta	%
Strain_DESCAO_Per	Strain of descending aorta	%
PWV	Pulse wave velocity	m/sec
AorticDisten	Aortic distensibility (needs to be calculated)	

Descriptive Statistics for MESA 5 (N=2,125)

	n	Mean ± SD	Median	Range (min- max)
MAX_ASCAO	2,123	9.3 ± 2.3	9.0	3.7-28.8
MIN_ASCAO	2,123	8.5 ± 2.2	8.2	2.8-28.1
MAX_DESCAO	2,056	5.5 ± 1.5	5.4	2.0-16.1
MIN_DESCAO	2,056	4.9 ± 1.4	4.8	1.6-14.2
DIFT_ASCDESC	2,046	16.9 ± 5.5	17.0	3.0-52.0
DIST_ASCDESC (H)	2,078	132.7 ± 21.8	131.3	78.0-275.4
Strain ASCAO (%)	2,123	10.0 ± 6.3	8.3	0.3-44.0
Strain DESCAO (%)	2,056	13.0 ± 8.4	10.7	1.2-56.0
PWV	2,030	8.9 ± 4.2	7.9	2.6-41.7

Structural Change of Ao (MESA)

Table 4

Ascending Aortic Luminal Diameter by Age and Gender in MESA Participants Without Influential Risk Factors^a (N = 1612)

	Women					
		Average ascending aortic luminal diameter (mm)				
Age categories (years)	Ν	5 th percentile	Median	95 th percentile	Min	Max
45–54	416	24.6	28.8	34.4	17.8	37.7
55-64	232	25.7	30.1	36.4	23.7	40.5
65–74	157	26.1	30.6	36.3	24.2	40.0
75–84	37	26.8	31.1	37.1	26.7	37.2
			M	en		
			Average ascendi	ng aortic luminal diameter	[.] (mm)	
Age categories (years)	Ν	5 th percentile	Median	95 th percentile	Min	Max
45–54	345	27.2	31.6	37.3	25.2	44.6
55-64	229	28.1	32.8	40.7	24.4	49.8
65–74	139	28.7	34.2	41.0	27.8	43.9
75–84	57	28.6	34.7	40.8	27.7	43.5

^aParticipants with hypertension, diabetes, lipid medication use, coronary calcium score value $> 95^{th}$ percentile and total cholesterol value $> 95^{th}$ percentile were excluded. BSA: body surface area.

Turkbey EB et al, J.Magn.Reson.Imaging 2013

Structural Change of Ao (MESA)

Table 3

Fully Adjusted Linear Regression Model Showing Associations of Ascending Aortic Luminal Diameter With Cardiovascular Disease Risk Factors in 3573 MESA Participants, 2000–2002

Variable	Regression coefficient (mm)	95% CI	Р
Age (per SD of 10 yrs)	1.1	1.0–1.3	< 0.001
Gender	1.2	0.9-1.5	< 0.001
Body surface area (per SD of 0.23 m2)	1.2	1.0-1.4	< 0.001
Race	1.5	1.1-1.9	< 0.001
Chinese American	-0.5	-0.80.2	< 0.001
African American	0.03	-0.3 - 0.4	0.86
Hispanic			
Diastolic blood pressure (per SD of 10 mmHg)	0.73	0.6-0.8	< 0.001
Hypertension medication (yes)	0.6	0.4-0.9	< 0.001
Cigarette smoking (yes)	-0.04	-0.3-0.2	0.74
Diabetes	-0.5	-0.90.2	0.006
Total cholesterol (per SD of 36 mg/dL)	-0.2	-0.30.0	0.007
HDL (per SD of 15 mg/dL)	0.1	-0.0-0.2	0.07
Lipid medication (yes)	-0.7	-1.00.4	< 0.001
IL-6 (per SD of 1.22 pg/mL)	0.0	-0.1-0.1	0.98
CRP (per SD of 6 mg/L)	-0.1	-0.2-0.0	0.07
Max CCA IMT (per SD of 0.19 mm)	0.09	-0.1-0.2	0.23
Log CAC (per SD of 2.52)	0.07	0.0-0.1	0.01

Turkbey EB et al, J.Magn.Reson.Imaging 2013

Aortic Distensibility and Mortality

age, gender, ethnicity, BMI, smoking, SBP, HTN medication, diabetes

Redheuil et al. submitted ESC 2013

Aortic Distensibility and Hard CVD

No significant change when using MBP, PP or BP taken during MRI Remained significant after further adjustment for Carotid IMT, ABi, LV mass

Redheuil et al. submitted ESC 2013

Arterial Stiffness

- Main determinant of age-related systolic and pulse pressure increase
- Main predictor of stroke, myocardial infarction, and heart failure

Mattace-Raso FU et al. Circulation 2006;113:657-663 Ciannattasio C et al. JACC 2002;39:1275-1282 Boutouyrie P et al. Hypertension 2002;39:10-15

Aorta stiffness and Cardiovascular Events

Framingham study, N=2232, 7.8years f/u

Mitchell et al.Circulation 2010;120:505-511

Aortic Geometry and Aging

Sugawara et al. JACC Cvi 2008 Hickson et al. JACC Cvi 2010

Redheuil et al. Artery Research 2014 in press

Aortic Geometry and Aging

Redheuil A. Yu W. et al. JACC 2011

Aortic Arch Geometry Blood Pressure and LV Remodeling

① SBP, DBP, PP
independent of : age,
gender, height, weight,
hypertension, cholesterol,
smoking

*p<0.001	Brachial SBP	Central SBP
AA Diameter	R=0.61*	R=0.62*
Arch Length	R=0.64*	R=0.65*
Arch Curvature	R=-0.71*	R=-0.70*

Redheuil A., Yu, W et al. JACC 2011

MESA Investigators

• Wake Forest University – G. Burke, G. Hundley, J. Carr • U. of Minnesota – A. Folsom, David Jacobs, Daniel Duprez, Northwestern University – Kiang Liu and Philip Greenland • UCLA, Harbor – A. Gomes, K. Watson, M Budoff, J. Rotter • Columbia University – S. Shea, G. Bahr and M. Prince • NHLBI – R. Boineau, D. Bild, J. Olson, Colin Wu • U. of Washington – R. Kronmal, R. McClelland, S. Heckbert University of Vermont – Russell Tracy and M. Cushman Tufts and U. Penn – J. Polak and Julio Chirinos

